4 research outputs found

    DD04107-Derived neuronal exocytosis inhibitor peptides: Evidences for synaptotagmin-1 as a putative target

    Get PDF
    15 pags, 8 figs, 3 tabs. -- Supplementary data to this article can be found online at https://doi.org/10.1016/j.bioorg.2021.105231.The analgesic peptide DD04107 (Pal-EEMQRR-NH2) and its acetylated analogue inhibit α-calcitonin gene-related peptide (α-CGRP) exocytotic release from primary sensory neurons. Examining the crystal structure of the SNARE-Synaptotagmin-1(Syt1) complex, we hypothesized that these peptides could inhibit neuronal exocytosis by binding to Syt1, hampering at least partially its interaction with the SNARE complex. To address this hypothesis, we first interrogate the role of individual side-chains on the inhibition of α-CGRP release, finding that E1, M3, Q4 and R6 residues were crucial for activity. CD and NMR conformational analysis showed that linear peptides have tendency to adopt α-helical conformations, but the results with cyclic analogues indicated that this secondary structure is not needed for activity. Isothermal titration calorimetry (ITC) measurements demonstrate a direct interaction of some of these peptides with Syt1-C2B domain, but not with Syt7-C2B region, indicating selectivity. As expected for a compound able to inhibit α-CGRP release, cyclic peptide derivative Pal-E-cyclo[EMQK]R-NH2 showed potent in vivo analgesic activity, in a model of inflammatory pain. Molecular dynamics simulations provided a model consistent with KD values for the interaction of peptides with Syt1-C2B domain, and with their biological activity. Altogether, these results identify Syt1 as a potential new analgesic target.This work was supported by the Spanish Ministerio de Economía y Competitividad (MINECO-FEDER), RTI2018-097189-C2 and CTQ2017-84371-P), and the Spanish National Research Council (CSIC, 201880E109, 201980E030). The NMR experiments were performed in the “Manuel Rico” NMR laboratory, LMR, CSIC, a node of the Spanish Large-Scale National Facility ICTS R-LRB. We thank Prof. Josep Rizo and R. Voleti (Dept. Biophysics, Biochemistry and Pharmacology, UT Southwestern Medical Center, Dallas, USA) for providing the clones required for expressing Syt1 and Syt7 proteins. SG-R and AB belong to the Instituto de Investigación Sanitaria del Principado de Asturias (ISPA).Peer reviewe

    Recent Progress in TRPM8 Modulation: An Update

    No full text
    The transient receptor potential melastatin subtype 8 (TRPM8) is a nonselective, multimodal ion channel, activated by low temperatures (<28 °C), pressure, and cooling compounds (menthol, icilin). Experimental evidences indicated a role of TRPM8 in cold thermal transduction, different life-threatening tumors, and other pathologies, including migraine, urinary tract dysfunction, dry eye disease, and obesity. Hence, the modulation of the TRPM8 channel could be essential in order to understand its implications in these pathologies and for therapeutic intervention. This short review will cover recent progress on the TRPM8 agonists and antagonists, describing newly reported chemotypes, and their application in the pharmacological characterization of TRPM8 in health and disease. The recently described structures of the TRPM8 channel alone or complexed with known agonists and PIP2 are also discussed

    Synthesis, high-throughput screening and pharmacological characterization of β-lactam derivatives as TRPM8 antagonists

    Get PDF
    The mammalian transient receptor potential melastatin channel 8 (TRPM8), highly expressed in trigeminal and dorsal root ganglia, mediates the cooling sensation and plays an important role in the cold hypersensitivity characteristic of some types of neuropathic pain, as well as in cancer. Consequently, the identification of selective and potent ligands for TRPM8 is of great interest. Here, a series of compounds, having a β-lactam central scaffold, were prepared to explore the pharmacophore requirements for TRPM8 modulation. Structure-activity studies indicate that the minimal requirements for potent β-lactam-based TRPM8 blockers are hydrophobic groups (benzyl preferentially or Bu) on R, R, R and R and a short N-alkyl chain (≤3 carbons). The best compounds in the focused library (41 and 45) showed IC values of 46 nM and 83 nM, respectively, in electrophysiology assays. These compounds selectively blocked all modalities of TRPM8 activation, i.e. menthol, voltage, and temperature. Molecular modelling studies using a homology model of TRPM8 identified two putative binding sites, involving networks of hydrophobic interactions, and suggesting a negative allosteric modulation through the stabilization of the closed state. Thus, these β-lactams provide a novel pharmacophore scaffold to evolve TRPM8 allosteric modulators to treat TRPM8 channel dysfunction.We thank the Ministry of Economy and Competitiveness (BES-2010-037112, BFU 2012-39092-C02, BFU2015- 70067-REDC, SAF2015-66275-C2-R), and the Generalitat Valenciana (PROMETEO II/2014/011) for financial support. We express our gratitude to Jessy Medina for technical assistancePeer Reviewe

    Insights into synaptotagmin-1 C2B domain as a putative target for new analgesic

    No full text
    17th Iberian Peptide Meeting, Madrid, 5-7th February 2020SAF2015-66275-C2-R, CTQ2017-84371-P, RTI2018-097189-C2, CSIC, 201880E109, 201980E030.Peer reviewe
    corecore